Неисправности импульсного блока питания с шим. Как работает простой и мощный импульсный блок питания

Всегда являлись важными элементами любых электронных приборов. Задействованы данные устройства в усилителях, а также приемниках. Основной функцией блоков питания принято считать снижение предельного напряжения, которое исходит от сети. Появились первые модели только после того, как была изобретена катушка переменного тока.

Дополнительно на развитие блоков питания повлияло внедрение трансформаторов в схему устройства. Особенность импульсных моделей заключается в том, что в них применяются выпрямители. Таким образом, стабилизация напряжения в сети осуществляется несколько другим способом, чем в обычных приборах, где задействуется преобразователь.

Устройство блока питания

Если рассматривать обычный блок питания, который используется в радиоприемниках, то он состоит из частотного трансформатора, транзистора, а также нескольких диодов. Дополнительно в цепи присутствует дроссель. Конденсаторы устанавливаются разной емкости и по параметрам могут сильно отличаться. Выпрямители используются, как правило, конденсаторного типа. Они относятся к разряду высоковольтных.

Работа современных блоков

Первоначально напряжение поступает на мостовой выпрямитель. На этом этапе срабатывает ограничитель пикового тока. Необходимо это для того, чтобы в блоке питания не сгорел предохранитель. Далее ток проходит по цепи через специальные фильтры, где происходит его преобразование. Для зарядки резисторов необходимо несколько конденсаторов. Запуск узла происходит только после пробоя динистора. Затем в блоке питания осуществляется отпирание транзистора. Это дает возможность значительно снизить автоколебания.

При возникновении генерации напряжения задействуются диоды в схеме. Они соединены между собой при помощи катодов. Отрицательный потенциал в системе дает возможность запереть динистор. Облегчение запуска выпрямителя осуществляется после запирания транзистора. Дополнительно обеспечивается Чтобы предотвратить насыщение транзисторов, имеется два предохранителя. Срабатывают они в цепи только после пробоя. Для запуска обратной связи необходим обязательно трансформатор. Подпитывают его в блоке питания импульсные диоды. На выходе переменный ток проходит через конденсаторы.

Особенности лабораторных блоков

Принцип работы импульсных блоков питания данного типа построен на активном преобразовании тока. Мостовой выпрямитель в стандартной схеме предусмотрен один. Для того чтобы убирать все помехи, используются фильтры в начале, а также в конце цепи. Конденсаторы импульсный лабораторный блок питания имеет обычные. Насыщение транзисторов происходит постепенно, и на диодах это сказывается положительно. Регулировка напряжения во многих моделях предусмотрена. Система защиты призвана спасать блоки от коротких замыканий. Кабели для них обычно используются немодульной серии. В таком случае мощность модели может доходить до 500 Вт.

Разъемы блока питания в системе чаще всего устанавливаются типа АТХ 20. Для охлаждения блока в корпусе монтируется вентилятор. Скорость вращения лопастей должна регулироваться при этом. Максимальную нагрузку блок лабораторного типа должен уметь выдерживать на уровне 23 А. При этом параметр сопротивления в среднем поддерживается на отметке 3 Ом. Предельная частота, которую имеет импульсный лабораторный блок питания, равна 5 Гц.

Как осуществлять ремонт устройств?

Чаще всего блоки питания страдают из-за сгоревших предохранителей. Находятся они рядом с конденсаторами. Начать ремонт импульсных блоков питания следует со снятия защитной крышки. Далее важно осмотреть целостность микросхемы. Если на ней дефекты не видны, ее можно проверить при помощи тестера. Чтобы снять предохранители, необходимо в первую очередь отсоединить конденсаторы. После этого их можно без проблем извлечь.

Для проверки целостности данного устройства осматривают его основание. Сгоревшие предохранители в нижней части имеют темное пятно, которое свидетельствует о повреждении модуля. Чтобы заменить данный элемент, нужно обратить внимание на его маркировку. Затем в магазине радиоэлектроники можно приобрести аналогичный товар. Установка предохранителя осуществляется только после закрепления конденсатов. Еще одной распространенной проблемой в блоках питания принято считать неисправности с трансформаторами. Представляют они собой коробки, в которых устанавливаются катушки.

Когда напряжение на устройство подается очень большое, то они не выдерживают. В результате целостность обмотки нарушается. Сделать ремонт импульсных блоков питания при такой поломке невозможно. В данном случае трансформатор, как и предохранитель, можно только заменить.

Сетевые блоки питания

Принцип работы импульсных блоков питания сетевого типа основан на низкочастотном снижении амплитуды помех. Происходит это благодаря использованию высоковольтных диодов. Таким образом, контролировать предельную частоту получается эффективнее. Дополнительно следует отметить, что транзисторы применяются средней мощности. Нагрузка на предохранители оказывается минимальная.

Резисторы в стандартной схеме используются довольно редко. Во многом это связано с тем, что конденсатор способен участвовать в преобразовании тока. Основной проблемой блока питания данного типа является электромагнитное поле. Если конденсаторы используются с малой емкостью, то трансформатор находится в зоне риска. В данном случае следует очень внимательно относиться к мощности устройства. Ограничители для пикового тока сетевой импульсный блок питания имеет, а находятся они сразу над выпрямителями. Их основной задачей является контроль рабочей частоты для стабилизации амплитуды.

Диоды в данной системе частично выполняют функции предохранителей. Для запуска выпрямителя используются только транзисторы. Процесс запирания, в свою очередь, необходим для активации фильтров. Конденсаторы также могут применяться разделительного типа в системе. В таком случае запуск трансформатора будет осуществляться намного быстрее.

Применение микросхем

Микросхемы в блоках питания применяются самые разнообразные. В данной ситуации многое зависит от количества активных элементов. Если используется более двух диодов, то плата должна быть рассчитана под входные и выходные фильтры. Трансформаторы также производятся разной мощности, да и по габаритам довольно сильно отличаются.

Заниматься пайкой микросхем самостоятельно можно. В этом случае нужно рассчитать предельное сопротивление резисторов с учетом мощности устройства. Для создания регулируемой модели используют специальные блоки. Такого типа системы делаются с двойными дорожками. Пульсации внутри платы будут происходить намного быстрее.

Преимущества регулируемых блоков питания

Принцип работы импульсных блоков питания с регуляторами заключается в применении специального контроллера. Данный элемент в цепи может изменять пропускную способность транзисторов. Таким образом, предельная частота на входе и на выходе значительно отличается. Настраивать по-разному можно импульсный блок питания. Регулировка напряжения осуществляется с учетом типа трансформатора. Для охлаждения прибора используют обычные куллеры. Проблема данных устройств, как правило, заключается в избыточном токе. Для того чтобы ее решить, применяют защитные фильтры.

Мощность приборов в среднем колеблется в районе 300 Вт. Кабели в системе используются только немодульные. Таким образом, коротких замыканий можно избежать. Разъемы блока питания для подключения устройств обычно устанавливают серии АТХ 14. В стандартной модели имеется два выхода. Выпрямители используются повышенной вольтности. Сопротивление они способны выдерживать на уровне 3 Ом. В свою очередь, максимальную нагрузку импульсный регулируемый блок питания воспринимает до 12 А.

Работа блоков на 12 вольт

Импульсный включает в себя два диода. При этом фильтры устанавливаются с малой емкостью. В данном случае процесс пульсации происходит крайне медленно. Средняя частота колеблется в районе 2 Гц. Коэффициент полезного действия у многих моделей не превышает 78%. Отличаются также данные блоки своей компактностью. Связано это с тем, что трансформаторы устанавливаются малой мощности. В охлаждении при этом они не нуждаются.

Схема импульсного блока питания 12В дополнительно подразумевает использование резисторов с маркировкой Р23. Сопротивление они способны выдержать только 2 Ом, однако для прибора такой мощности достаточно. Применяется импульсный блок питания 12В чаще всего для ламп.

Как работает блок для телевизора?

Принцип работы импульсных блоков питания данного типа заключается в применении пленочных фильтров. Эти устройства способны справляться с помехами различной амплитуды. Обмотка дросселя у них предусмотрена синтетическая. Таким образом, защита важных узлов обеспечивается качественная. Все прокладки в блоке питания изолируются со всех сторон.

Трансформатор, в свою очередь, имеет отдельный куллер для охлаждения. Для удобства использования он обычно устанавливается бесшумным. Предельную температуру данные устройства выдерживают до 60 градусов. Рабочую частоту импульсный блок питания телевизоров поддерживает на уровне 33 Гц. При минусовых температурах данные устройства также могут использоваться, однако многое в этой ситуации зависит от типа применяемых конденсатов и сечения магнитопровода.

Модели устройств на 24 вольта

В моделях на 24 вольта выпрямители применяются низкочастотные. С помехами успешно справляться могут всего два диода. Коэффициент полезного действия у таких устройств способен доходить до 60%. Регуляторы на блоки питания устанавливаются довольно редко. Рабочая частота моделей в среднем не превышает 23 Гц. Сопротивление резисторы могут выдерживать только 2 Ом. Транзисторы в моделях устанавливаются с маркировкой ПР2.

Для стабилизации напряжения резисторы в схеме не используются. Фильтры импульсный блок питания 24В имеет конденсаторного типа. В некоторых случаях можно встретить разделительные виды. Они необходимы для ограничения предельной частоты тока. Для быстрого запуска выпрямителя динисторы применяются довольно редко. Отрицательный потенциал устройства убирается при помощи катода. На выходе ток стабилизируется благодаря запиранию выпрямителя.

Боки питания на схеме DA1

Блоки питания данного типа от прочих устройств отличаются тем, что способны выдерживать большую нагрузку. Конденсатор в стандартной схеме предусмотрен только один. Для нормальной работы блока питания регулятор используется. Устанавливается контроллер непосредственно возле резистора. Диодов в схеме можно встретить не более трех.

Непосредственно обратный процесс преобразования начинается в динисторе. Для запуска механизма отпирания в системе предусмотрен специальный дроссель. Волны с большой амплитудой гасятся у конденсатора. Устанавливается он обычно разделительного типа. Предохранители в стандартной схеме встречаются редко. Обосновано это тем, что предельная температура в трансформаторе не превышает 50 градусов. Таким образом, балластный дроссель со своими задачами справляется самостоятельно.

Модели устройств с микросхемами DA2

Микросхемы импульсных блоков питания данного типа среди прочих устройств выделяются повышенным сопротивлением. Используют их в основном для измерительных приборов. В пример можно привести осциллограф, который показывает колебания. Стабилизация напряжения для него является очень важной. В результате показатели прибора будут более точными.

Регуляторами многие модели не оснащаются. Фильтры в основном имеются двухсторонние. На выходе цепи транзисторы устанавливаются обычные. Все это дает возможность максимальную нагрузку выдерживать на уровне 30 А. В свою очередь, показатель предельной частоты находится на отметке 23Гц.

Блоки с установленными микросхемами DA3

Данная микросхема позволяет устанавливать не только регулятор, но и котроллер, который следит за колебаниями в сети. Сопротивление транзисторы в устройстве способны выдерживать примерно 3 Ом. Мощный импульсный блок питания DA3 с нагрузкой в 4 А справляется. Подсоединять вентиляторы для охлаждения выпрямителей можно. В результате устройства можно использовать при любой температуре. Еще одно преимущество заключается в наличии трех фильтров.

Два из них устанавливаются на входе под конденсаторами. Один фильтр разделительного типа имеется на выходе и стабилизирует напряжение, которое исходит от резистора. Диодов в стандартной схеме можно встретить не более двух. Однако многое зависит от производителя, и это следует учитывать. Основной проблемой блоков питания данного типа считается то, что они не способны справляться с низкочастотными помехами. В результате устанавливать их на измерительные приборы нецелесообразно.

Как работает блок на диодах VD1?

Данные блоки рассчитаны на поддержку до трех устройств. Регуляторы в них имеются трехсторонние. Кабели для связи устанавливаются только немодульные. Таким образом, преобразование тока происходит быстро. Выпрямители во многих моделях устанавливаются серии ККТ2.

Отличаются они тем, что энергию от конденсатора способны передавать на обмотку. В результате нагрузка от фильтров частично снимается. Производительность у таких устройств довольно высокая. При температурах свыше 50 градусов они также могут использоваться.

Сервисный центр Комплэйс выполняет ремонт импульсных блоков питания в самых разных устройствах.

Схема импульсного блока питания

Импульсные блоки питания используются в 90% электронных устройств. Но для нужно знать основные принципы схемотехники. Поэтому приведем схему типичного импульсного блока питания.

Работа импульсного блока питания

Первичная цепь импульсного блока питания

Первичная цепь схемы блока питания расположена до импульсного ферритового трансформатора.

На входе блока расположен предохранитель.

Затем стоит фильтр CLC, причем катушка используется для подавления синфазных помех. Вслед за фильтром располагается схема выпрямления на основе диодного моста и электролитического конденсатора. Часто для защиты схемы от коротких высоковольтных импульсов после предохранителя параллельно входному конденсатору устанавливается варистор. Сопротивление варистора резко падает при повышенном напряжении. Поэтому весь избыточный ток идет через него в предохранитель, который сгорает, выключая входную цепь.

Защитный диод D0 нужен для того, чтобы предохранить схему блока питания, если сгорит диодный мост. Диод не даст пройти отрицательному напряжению в основную схему, потому, что откроется и сгорит предохранитель.

За диодом стоит варистор на 4-5 ом для сглаживания резких скачков потребления тока в момент включения и первоначальной зарядки конденсатора C1.

Активные элементы первичной цепи: коммутационный транзистор Q1 с ШИМ (широтно импульсным модулятором) контроллером управления. Транзистор преобразует постоянное выпрямленное напряжение 310В в переменное, которое преобразуется трансформатором Т1 на вторичной обмотке в пониженное выходное.

И еще — для питания ШИМ-регулятора используется выпрямленное напряжение, снятое с дополнительной обмотки трансформатора.

Работа вторичной цепи импульсного блока питания

В выходной цепи после трансформатора стоит либо диодный мост, либо 1 диод и CLC фильтр, состоящий из электролитических конденсаторов и дросселя.

Для стабилизации выходного напряжения используется оптическая обратная связь. Она позволяет развязать выходное и входное напряжение гальванически. В качестве исполнительных элементов обратной связи используется оптопара OC1 и интегральный стабилизатор TL431. Когда выходное напряжение после выпрямления превышает напряжение стабилизатора TL431 включается фотодиод, который включает фототранзистор, управляющий драйвером ШИМ. Регулятор TL431 снижает скважность импульсов или вообще останавливается, пока напряжение не снизится до порогового.

Ремонт импульсных блоков питания

Неисправности импульсных блоков питания, ремонт

Исходя из схемы импульсного блока питания перейдем к ее ремонту. Возможные неисправности:

  1. Если сгорел варистор и предохранитель на входе или VCR1, то ищем дальше. Потому, что они так просто не горят.
  2. Сгорел диодный мост. Обычно это микросхема. Если есть защитный диод, то и он обычно горит. Нужна их замена.
  3. Испорчен конденсатор C1 на 400В. Редко, но бывает. Часто его неисправность можно выявить по внешнему виду, но не всегда.
  4. Если сгорел переключающий транзистор, то выпаиваем и проверяем его. При неисправности требуется замена.
  5. Если сгорел ШИМ регулятор, то меняем его.
  6. Замыкание или обрыв обмоток трансформатора. Шансы на ремонт минимальны.
  7. Неисправность оптопары — крайне редкий случай.
  8. Неисправность стабилизатора TL431. Для диагностики замеряем сопротивление.
  9. Если КЗ в конденсаторах на выходе блока питания, то выпаиваем и диагностируем тестером.

Примеры ремонта импульсных блоков питания

Например, рассмотрим ремонт импульсного блока питания на несколько напряжений.

Неисправность заключалась в в отсутствии на выходе блока выходных напряжений.

Например, в одном блоке питания были неисправны два конденсатора 1 и 2 в первичной цепи. Но они не были вздутыми.

На втором не работал ШИМ контроллер.

На вид все конденсаторы на снимке рабочие, но внутреннее сопротивление оказалось большое. Более того, внутреннее сопротивление ESR конденсатора 2 в кружке было в несколько раз выше номинального. Этот конденсатор стоит в цепи обвязки ШИМ регулятора, поэтому регулятор не работал. После замены этого конденсатора ШИМ заработал и работоспособность блока питания восстановилась.

Цены на ремонт импульсных БП

Цены на ремонт импульсных блоков питания очень отличаются. Дело в том, что существует очень много электрических схем, по которым по которым делают импульсные блоки питания. Особенно много отличий в схемах с PFC (Power Factor Correction, иначе коэффициент коррекции мощности), которые повышают КПД. Самое важное — есть ли схема на сгоревший блок питания. Если такая электрическая схема есть в доступе, то ремонт блока питания существенно упрощается.

Цена ремонта колеблется от 1000 рублей для простых блоков питания до 10000 рублей для сложных дорогих БП. Цена определяется сложностью блока питания, а также сколько элементов в нем сгорело. Если все новые БП одинаковые, то все неисправности разные.

Например, в одном сложном блоке питания сгорело 10 элементов и 3 дорожки. Тем не менее его удалось восстановить, причем цена ремонта составила 8000 рублей. Сам прибор стоит порядка 1 000 000 рублей. Таких блоков питания в России не продают.

Устройство китайских зарядных устройств для ноутбуков описано .

В любой электронной системе, работающей от импульсного блока питания, наступает неприятный момент, когда приходится сталкиваться с проблемным выходом его из строя. К сожалению, импульсные радиоэлементы или блоки, как показывает практика, не столь долговечны, как того хотелось бы, поэтому требуют к себе более пристального внимания, а зачастую просто замены или ремонта.

В последнее время многие производители импульсных блоков питания решают вопрос ремонта или замены своего «детища» кардинально. Они просто делают монолитные импульсные блоки, не оставляя практически никаких вариантов начинающим радиолюбителям для их ремонта. Но если вы стали обладателем разборного импульсного блока питания , то в умелых руках и владея определёнными знаниями и элементарными навыками замены радиоэлементов, вы легко сможете самостоятельно продлить срок его службы.

Общие принципы работы импульсных блоков питания

Давайте сначала разберёмся с общим принципом работы любого импульсного блока питания. Тем более что основные рабочие функции и даже выходные напряжения для определённых моделей, которые необходимы для функционирования всей системы (будь то телевизор или другой вариант электронного устройства) у всех импульсников практически одинаковы. Различаются только индивидуальные схематические рисунки и соответственно применяемые радиоэлементы и их параметры. Но это уже не столь важно для понимания общего принципа его работы.

Для простых любителей или «чайников»: общий принцип работы импульсных блоков питания заключается в трансформации переменного напряжения , которое подаётся непосредственно из розетки 220 В в постоянные выходные напряжения для запуска и работы всех остальных блоков системы. Осуществляется такая трансформация с помощью соответствующих импульсных радиоэлементов. Основными из них являются импульсный трансформатор и транзистор, которые обеспечивают рабочее функционирование всех электропотоков. Для проведения ремонта нужно знать как запускается этот блок. А для начала проверить наличие входного рабочего напряжения, предохранитель, диодный мост и так далее.

Рабочий инструмент для проверки импульсных блоков питания

Для ремонта импульсного блока питания, вам потребуется обычный, даже простенький мультиметр , который проверит постоянное и переменное напряжение. С помощью функций омметра, прозвонив сопротивления радиодеталей, вы также можете быстро проверить исправность предохранителей, дросселей, рабочее сопротивление резисторов, «бочонки» электролитических конденсаторов. А также транзисторные диодные переходы или диодные мосты и прочие виды радиоэлементов и их связи в любой электронной схеме (иногда даже не выпаивая их полностью).

Проверять импульсный блок сначала нужно в «холодном» режиме. В этом случае прозваниваются все визуально подозрительные (вздувшиеся или горелые радиодетали), которые поддаются «холодной» проверке без подачи рабочего напряжения. Визуально испорченные радиодетали следует немедленно заменить на новые. Если облезла маркировка воспользуйтесь принципиальной схемой или найдите соответствующий вариант в интернете.

Замену производить нужно только с разрешающим допуском по определённым параметрам , который вы можете найти для любого радиоэлемента в специализированной литературе или в прилагающейся к прибору схеме. Это безопасный метод, потому что импульсные блоки питания очень коварны своими электрическими разрядами.

Не забывайте и то, что при обнаружении нерабочего радиоэлемента , нужно проверить соседние с ним детали. Зачастую резкие перепады напряжения при сгорании одного элемента, влекут за собой выход из строя соседних. В процессе практической деятельности по ремонту определённых моделей вы будете логически вычислять неисправность исходя из результата состояния ремонтируемого объекта. К примеру, даже по определённому запаху (запах тухлых яиц при выходе из строя электролита), при включении по монотонному звуку или треску в процессе работы блока и прочих дефектах, которые могут возникнуть в процессе работы любого электронного прибора.

В рабочем режиме проверка импульсного блока питания возможна только при нагрузке всей системы – не вздумайте отключить нагрузочные шины телевизора при проверке. Можно создать нагрузку искусственным путём с помощью подключения специально собранного нагрузочного эквивалента.

Основные неисправности и методы проверки импульсных блоков питания

Как включить и выставить определённый режим мультиметра каждый может разобраться сам, даже школьник. Перед началом проверки убедитесь в работоспособности сетевого кабеля или выключателя, которые можно определить визуально или с помощью мультиметра. Не забудьте при любой проверке разрядить электролитические конденсаторы. Они накапливают и удерживают довольно приличный заряд на протяжении определённого времени, даже после выключения всей системы.

Возможные причины выхода из строя импульсного блока питания и необходимая замена нерабочих радиоэлементов:

  1. При сгорании предохранителя весь блок обесточивается. Заменить перегоревший контакт очень просто. Используйте обычный проволочный волосок, который наматывается поверх предохранителя или припаивается непосредственно к его контактам. Необходимо учитывать толщину волоска, которая рассчитана на определённую силу тока. Иначе вы рискуете в последующем вывести из строя весь импульсный блок, если предохранитель не сработает.
  2. Если полностью отсутствует выходное напряжение, возможно, неисправен соответствующий конденсатор или дроссель, который нужно заменить или поменять обмотку. Для этого нужно размотать повреждённый провод и намотать новый с соответственным количеством витков и подходящим сечением. После чего самодельный дроссель впаивается на своё рабочее место.
  3. Проверить все диодные мосты и переходы. Как это сделать описано выше. Не забывайте при установке новых деталей производить самостоятельную, а главное, качественную пайку.

Самостоятельная и качественная пайка

Правильная и качественная пайка является одним из основополагающих навыков, которым должен овладеть любой начинающий радиолюбитель. От этого зависит конечный результат всего ремонта и срок дальнейшей эксплуатации отремонтированного прибора.

Основные этапы ремонта импульсных блоков питания

Возможные неисправности типовых импульсных блоков питания на примере телевизора или компьютера:

Неисправности импульсных блоков питания на 12 вольт

Сложность замены любого импульсного блока питания на 12 В заключается в поиске нужной модели, а они очень многообразны. Поэтому найти такой блок с нужным выходным напряжением и силой тока не всегда представляется возможным, если он быстро понадобился. Иногда проще, при незначительной поломке, восстановить его работоспособность самому. Вот некоторые советы для этого:

Надеемся, эта статья дала общее представление об устройстве импульсных блоков питания. А, возможно, даже и заинтересовала многих начинающих радиолюбителей, которые хотят повысить свои профессиональные навыки.

Импульсный блок питания вмонтирован в большинство бытовых приборов. Как показывает практика, именно этот узел довольно часто выходит из строя, требуя замены.

Большое напряжение, постоянно проходящее через блок питания, не лучшим образом сказывается на его элементах. И дело здесь не в ошибках производителей. Повышая срок службы путём монтирования дополнительной защиты, можно добиться надёжности защищаемых деталей, но потерять её на только что установленных. Кроме того, дополнительные элементы усложняют ремонт – становится трудно разобраться во всех хитросплетениях полученной схемы.

Производители решили эту проблему радикально, удешевив ИБП и сделав его монолитным, неразборным. Такие одноразовые устройства встречаются всё чаще. Но, если вам повезло – отказал разборной блок, самостоятельный ремонт вполне возможен.

Принцип работы у всех ИБП одинаков. Различия касаются только схем и типов деталей. Поэтому разобраться в поломке, имея основополагающие познания в электрике, довольно просто.

Для ремонта понадобится вольтметр.

С его помощью измеряется напряжение на электролитическом конденсаторе. Он выделен на фото. Если напряжение 300 В – предохранитель цел и все остальные, связанные с ним элементы (сетевой фильтр, кабель питания, входные ) исправны.

Бывают модели с двумя небольшими конденсаторами. В этом случае о нормальном функционировании упомянутых элементов свидетельствует постоянное напряжение 150 В на каждом из конденсаторов.

При отсутствии напряжения нужно прозвонить диоды выпрямительного моста, конденсатор, сам предохранитель и так далее. Коварство предохранителей в том, что, выйдя из строя, они внешне ничем не отличаются от рабочих образцов. Обнаружить неисправность можно только через прозвонку – сгоревший предохранитель покажет высокое сопротивление.

Обнаружив неисправный предохранитель, следует внимательно осмотреть плату, так как выходит он из строя зачастую одновременно с другими элементами.

Испорченный конденсатор легко заметить невооружённым глазом – он будет разрушен или вздут.

В таком случае он не нуждается в прозванивании, а просто выпаивается. Также выпаиваются и прозваниваются следующие элементы:

  • силовой или выпрямительный мост (выглядит как монолитный блок или может состоять из четырёх диодов);
  • конденсатор фильтра (выглядит как большой блок или несколько блоков, соединённых параллельно или последовательно), находящийся в высоковольтной части блока;
  • транзисторы, установленные на радиаторе (это – силовые ключи).

Важно. Все детали выпаиваются и заменяются одновременно! Замена по очереди будет приводить каждый раз к выгоранию силовой части.

Сгоревшие элементы нужно заменить на новые. Радиорынок предлагает богатый ассортимент деталей для блоков питания. Подобрать неплохие варианты по минимальным расценкам довольно легко.

На заметку. Предохранитель можно успешно заменить кусочком медного провода. Толщина провода в 0.11 миллиметра соответствует предохранителю на 3 Ампера.

Причины поломки :
  • перепады напряжения;
  • отсутствие защиты (место под неё есть, но сам элемент не установлен – так производители экономят).

Решение этой неисправности импульсных блоков питания:

  • установить защиту (не всегда возможно подобрать нужную деталь);
  • или использовать фильтр сетевого напряжения с хорошими защитными элементами (не перемычками!).

Что делать, если нет выходного напряжения?

Ещё одна часто встречающаяся причина неисправности блока питания никак не связана с предохранителем. Речь идёт об отсутствии выходного напряжения при полностью исправном таком элементе.
Решение проблемы :

  1. Вздутый конденсатор – требуется выпаивание и замена.
  2. Вышедший из строя дроссель – необходимо вынуть элемент и поменять обмотку. Повреждённый провод разматывается. При этом ведётся подсчёт витков. Затем на это же количество оборотов наматывается новый провод подходящего . Деталь возвращается на место.
  3. Деформированные диоды моста заменяются новыми.
  4. При необходимости детали проверяются тестером (если визуально не обнаружено повреждений).

Перед тем, необходимо обязательно изучить правила безопасного использования такого инструмента. Таким прибором нельзя светить в отражающие поверхности, поскольку можно повредить глаза.

Вполне по силам соорудить самому. В качестве нагнетателя используется вентилятор, а нагревателя — спираль. Наиболее оптимальным вариантом является схема с тиристором.

Причины поломки :

  • плохая вентиляция.

Решение :

  • не закрывать вентиляционные отверстия;
  • обеспечить оптимальный температурный режим – охлаждение и вентиляцию.

Что необходимо запомнить :

  1. Первое подключение блока производится к лампе мощностью 25 Ватт. Особо важно это после замены диодов или транзистора! Если где-то допущена ошибка или не замечена неисправность, проходящий ток не повредит всё устройство в целом.
  2. Начиная работу, не стоит забывать, что на электролитических конденсаторах длительное время сохраняется остаточный разряд. Перед выпаиванием деталей необходимо закоротить выводы конденсатора. Напрямую этого делать нельзя. Следует произвести закорачивание через сопротивление номиналом выше 0,5 В.

Если весь ИБП тщательно проверен, но всё равно не работает, можно обратиться в ремонтную мастерскую. Возможно, ваш случай относится к сложной поломке всё-таки поддающейся исправлению.

По статистике около 5% поломок требуют замены блока. К счастью, это устройство всегда доступно. В магазинах можно обнаружить богатый ассортимент в разных ценовых категориях.

Особенности ремонта импульсного блока питания DVD на видео

Очень часто ко мне обращаются мои клиенты с проблемой, что не работает блок питания на каком-либо устройстве. Блоки питания я делю на две категории: «простые» и «сложные». К «простым» я отношу антенные, блоки питания от каких-либо игровых приставок, от переносных телевизоров и другие подобные, которые непосредственно включаются в розетку. Одним словом – выносные, т.е. отдельно от основного устройства. «Сложные» в моей схеме распределения – это блоки питания, которые стоят в самом устройстве. Ну, «сложные» мы, пока оставим в покое, а вот о «простых» поговорим.

Существует не очень много причин выхода из строя выносных блоков питания . Перечислю их все:

  1. Обрыв в обмотках трансформатора (первичная и вторичная);

  2. Короткое замыкание в обмотках трансформатора;

  3. Выход из строя выпрямителя напряжения (диодный мост, конденсатор, стабилизатор и связанные с ним радиоэлементы).

Если, при поломки блока, на его выходе напряжения отсутствуют совсем, то, скорее всего, причина в трансформаторе. Если же на выходе присутствует заниженное напряжение, то дело в выпрямители. Проверить трансформатор можно измерив сопротивление на его обмотках. На первичной обмотке сопротивление должно быть более 1 кОма, на вторичной или вторичных – менее 1 кОма. В некоторых блоках питания , на первичной обмотке, под обёрткой, которой оборачивается сама обмотка, ставится предохранитель. Чтобы до него добраться, нужно разорвать обёртку на этой обмотке. Чаще всего, такой механизм защиты присутствует в трансформаторах китайского производства. Так что если первичная обмотка не прозванивается, то проверьте, может быть на ней установлен предохранитель.

С трансформатором разобрались. Теперь перейдём к проверке выпрямителя напряжения и его компонентам. Самая распространённая поломка в блоках питания – это выход из строя одного или нескольких элементов, из которых, собственно, и состоит выпрямитель напряжения. Вот эти причины мы с вами и будем обсуждать в данной статье. Будем производить ремонт блока питания своими руками .

Рассмотрим это на примере антенного блока питания с выходным напряжением 12 В .

На данном блоке питания заниженное выходное напряжение: вместо положенных 12 Вольт , он выдаёт 10 Вольт . Итак приступим к устранению данной проблемы. Для начала, естественно, нужно разобрать сам блок. После того, как мы убедимся, что трансформатор в данном устройстве цел, переходим к проверке элементов выпрямителя.

В первую очередь проверяем диодный мост – это четыре диода, к которым идут контакты от вторичной обмотке трансформатора. Как проверять диоды я рассказал в видео, которое вы найдёте в конце этой статьи. В нашем блоке диодный мост цел. Теперь смотрим на конденсатор: бывает, что конденсаторы «вздуваются». У нас конденсатор не «вздутый». Если диодный мост и конденсаторы целы, осматриваем плату выпрямителя на предмет почернения или обгорания элементов, стоящих на плате.

Если визуально всё в порядке, то смело выпаиваем стабилизатор напряжения. В данном выпрямители стоит стабилизатор напряжения 12 Вольт – 78L12. Почти всегда именно этот элемент выходит из строя. Перед извлечением этой детали из платы, запомните как была эта деталь установлена на плате, чтобы при замене не перепутать полярность. Вместе со стабилизатором рекомендую заменить также конденсатор, это для надёжности, так как чаще всего он тоже выходит из строя.

После замены этих деталей, проверьте – не отпаялись ли в процессе ремонта от контактов проводки, идущие от трансформатора.

Если всё хорошо, собираем наш . Замеры, произведённые после нашего ремонта данного блока питания, показали на выходе напряжение 12 Вольт , что, в общем-то, нам и требовалось. Всё!